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A simple formulation is described which can be used to predict the line shape obtained in three-axis 
spectrometry. The method is shown to produce curves in good agreement with measured data. 

qhe resolution function for a three-axis spectrometer 
has recently been derived by Cooper & Nathans (1967) 
in the form of a probability distribution in the four 
dimensions, kzkukz and co, of momentum-energy space. 
With the spectrometer adjusted to look at the point 
Q, co in this space, the resolution function is 

4 
R(XI,X2,X3,X4)= exp [-(t__~l ~ XiAi,Xj)] (1) 

/= I  

where X~-3 are the x, y and z components of AQ and 
X4 is Aco. The origin of the coordinates of the vector 
X[ = (X1, X2, )(3, X4)] is thus the point Q, co. A~j is a 4 x 4 
symmetric matrix. 

The number of neutrons scattered into the detector 
will thus be proportional to 

Sff l  4 I= R(XI,X2, X3, X4)D(X1,X2, X3, X4) H dX, (2) 
i=l 

where D(X) is the cross section at the point X. The re- 
sult of adjusting the spectrometer so that the point 
under investigation moves in a series of discrete steps 
along a path in momentum-energy space can be pre- 
dicted by evaluating I for the points along this path. 
Programs have been written to evaluate these integrals 
for various types of cross section, but except in certain 
special cases, each integration has to be performed 
numerically, involving a considerable amount of com- 
putation. 

One of the interesting types of cross section is that 
for a perfect elastic solid, in which the cross section is 
constant for values of Q and co lying on a surface in 
momentum-energy space and zero elsewhere. If the 
equation of this dispersion surface is f (Q,  co)=0 then 
the cross section is proportional to the delta function 
6[f(Q, co)]. 

The scattered neutron intensity, equation (2), may 
then be written 

4 

The evaluation of this integral may be carried out in 
several ways. The equation for the dispersion surface 
could be used to reduce the number of variables in the 
integration from four to three and the integration 
could then be carried out numerically. This would still 
lead to a considerable amount of computation. The 

approach adopted in this present work is to replace the 
delta function by its analytic form, 

6[(fX)]--  ~ -  _ e x p  (-i/~f(X))d/~ (4) 

where/~ is a dummy variable. If now the dispersion 
surface can be represented by a quadratic equation in 
co and Q the number of integrals which need to be 
evaluated numerically is reduced to one. 

The general four-dimensional quadratic equation 
may be written 

~ X,B,jXj + T,X, + H= 0 (5) 
i= l  l -  

where B is a 4 x 4 symmetric matrix, T is a four-com- 
ponent vector and H is a constant. We may now write 
(2) in terms of equations (5) and (1) as 
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Fig. 1. The integrand of  equation (7) for the neutron group 
shown in Fig. 2 at the energy values (a) 0-7, (b) 1-0 and (c) 
1"3 THz. The solid line is the real part  and the dashed line 
the imaginary part. 



B. C. H A Y W O O D  409 

+ il.z(X, + Z°)Bu(Xj + X~)]) 

+iluTi(X,+X°)+i~H}i=~ dX, dp.  (6) 

In this equation the origin of the resolution function is 
at the point X 0 in the coordinates of the dispersion sur- 
face. 

The integration over X may now be performed ana- 
lytically and the result is 

I(X0) = exp (G + ig)dl~ (7) 

where E, F, G and K are functions of X ° and/~ given in 
the Appendix. 

This integral can be shown to converge and at large 
values of/~, E and F go as/1-2 and G tends to a con- 
stant. The function to be integrated is symmetric in + 
and - /1 and consists of a damped oscillatory function 
whose main area comes from the lobe centred at/~ = 0. 
The height of this lobe is independent of the shape of 
the dispersion surface as can be seen from equation (6) 
and the effect of passing the resolution probability 
function through the surface can be seen in Fig. 1 show- 
ing the integrand of equation (7) and Fig. 2 showing 
I(X0). In Fig. l(a) the probability function is centred 
well away from the dispersion surface, and I(X °) [equa- 
tion (7)] has value close to zero. As the resolution func- 
tion approaches the dispersion surface the centre lobe 
broadens as in Fig. l(b) where the value ofI(X °) is still 
small but finite, until finally the peak of the intensity 
distribution is reached as in Fig. l(c). The imaginary part 
of the integral is antisymmetric about/~--0 and thus 
sums to zero. 

The fit of I(X 0) to typical experimental data can be 
seen in Fig. 2. The points are those for a longitudinal 
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Fig. 2. A phonon in RbI measured on the Dido three-axis 
spectrometer. The normalization of the predicted curve 
(dashed line) has been made to the area under the experi- 
mental points. 

phonon in RbI travelling along the [111] direction 
Saunderson (private communication). 

The most serious limitation to the applicability of 
this method is that it is not possible to include in the 
equation terms of the form 1/co o r  l/co 2, which are 
found in the cross section equations for magnons and 
phonons. This limitation arises from the original as- 
sumption of Cooper & Nathans that the collimator 
transmission functions and crystal-mosaic spreads may 
be described by Gaussian distributions. Thus the reso- 
lution function given in equation (1) is finite every- 
where in momentum-energy space whereas in reality 
it must cut off at some definite distance from the origin. 
In the numerical methods of convolution used pre- 
viously this is unimportant since the integration may be 
truncated at some convenient point, but in the present 
analytic method the integration must be taken from 
- c ~  to + oo over each variable. Thus the use of a 
cross-section function which becomes infinite at any 
point will produce a value of the predicted scattered 
neutron intensity which contains a non-physical con- 
tribution from this infinity. 

In practice this limitation will become important 
only at those low values of co where the cross section 
varies significantly over the volume swept out by the 
resolution function along the path in momentum-ener- 
gy space followed by the experiment. In such cases it 
may be more convenient to carry out the integration of 
x, y and z analytically and then integrate over both co 
and ~ numerically. 

I would like to acknowledge several helpful sugges- 
tions from Dr J. L. Beeby during th." course of this 
work and discussions with D. H. Saunderson and Dr 
M. W. Stringfellow. 

A P P E N D I X  
The integral 

4 I X0 __iLexp_ 
]=1  

4 
+ i,u(X ° + X,)Bu(X ? + X,)}] H dX i (A1) 

may be readily evaluated by the method of completing 
the squares in the exponent for each of the variables in 
turn. The result is 

where 
I(X0) = (E + iF) exp (G + ill) (A2) 

E + iF= 7~2((Z10C2~30~4)-1/2 

0C 1 = C l l  , C = A + i/xB 

c~2= C22 C~2 
Cll 

ch 
cq = C33 

0C2 C11 

(A3) 
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where 

where 

~4 = C 4 4 -  F A _  C124 _ F ! 
52 51 53 

C12C13 Fx=C23- - -  

Cll 

F 2 = C24 C12C14 

F3= C3 4 F 1 F 2  C14C13 . 
~2 Ofl 

4 4 
G + i H = - i l t  ~ ~ o o X l B t j X j  

i =-1 1=1 

+ DA + + DA + 
51 ¢t 2 5 3 o~ 4 

4 

Dl=i l t  ~ Bu X° 
1=I 

C12D 1 4 

i=1 

D s -  ClaD 1 F1D2 4 
Cll o~2 ill ~ Bat XO 

i=1 

D 4 -  CI4D 1 F a D 2  FaD3 4 
Oq "2 O~ 3 ilt E B4,X°" 

l = l  

The addition of a term linear in co allows a parabolic 
dispersion surface, as found for example in a ferro- 
magnet, to be treated. A constant term in the equation 
of the dispersion surface allows an energy gap at Q = 0. 
The result of these additions are further terms in equa- 
tion (A1) which becomes 

I {4 I(X°)= exp - ~1 ~ [XiA"Xi  
1 1=1 

+ilt(X ° + X,)B,,(X~ + Xj)] 

+ i,u(T(X~ + X4) + H) dX~ (A4) 
i 

where T and H are constant coefficients. 
The result .of these integrations is again of the form 

of equation (A2) and the values of E and F are as before 
except that 

D4--  C14D 1 F 2 D 2  F3D3  4 
51 52 53 ilt ~ B4iX ° -  ilzT 

i = l  

and 

4 -0 2 D I D~ D 2 
O + i H = - i l t  ~ o o XIBuX ~ + - -  + - -  + - -  + -- 

i = 1 0¢1 0~2 0~3 0(4 

- i/t(H + Too). 
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The time modulation of neutrons diffracted by a quartz single crystal is investigated. The experimental re- 
suits agree with the aberration and with the Doppler effect caused during neutron diffraction by vibrations 
of a single crystal. 

Introduction 

In diffraction experiments, neutrons with a wavelength 
of 2 = 1 to 2 A are conventionally used. These neutrons 
with velocities of 4 x 105 to 2 x 105 cm.sec -1 are also suit- 
able for the investigation of dynamical effects together 
with the displacement of crystallographic planes and 

its influence upon the process of neutron diffraction. 
These dynamical effects are caused by two physical 
processes. The first is the vector addition of neutron 
velocity and the velocity of lattice-plane displacement, 
i.e. the aberration effect; the second represents the rela- 
tive change of neutron wavelength, i.e. the Doppler ef- 
fect. They can be observed in the course of neutron 


